Challenges

Challenge: Vanishing Gradients

- If the discriminator is quite bad
 - → the generator gets confused
 - → no reasonable generator gradients
- If the discriminator is perfect
 - → gradients go to 0, no learning anymore
- Bad if early in the training
 - Easier to train the discriminator than generator

$$J_D = -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{data}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log (1 - D(G(\boldsymbol{z})))^{\frac{10^{-4}}{10^{-4}}}$$

$$J_G = -\frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log(D(G(\boldsymbol{z}))$$
Fig. 5. First, a DCGAN is a strained from scratch of is trained from scratch of the scratc

Gradient of the generator with the original cost

Fig. 5. First, a DCGAN is trained for 1, 10 and 25 epochs. Then, with the **generator fixed**, a discriminator is trained from scratch and measure the gradients with the original cost function. We see the gradient norms **decay quickly** (in log scale), in the best case 5 orders of magnitude after 4000 discriminator iterations. (Image source: Arjovsky and Bottou, 2017)

Challenge: Low dimensional supports

- Data lie in low-dim manifolds
- However, the manifold is not known
- Ouring training p_g is not perfect either, especially in the start
- o So, the support of p_r and p_g is nonoverlapping and disjoint → not good for KL/JS divergences
- Easy to find a discriminating line

Challenge: Batch Normalization does not work right away

- Batch-normalization causes strong intra-batch correlation
 - Activations depend on other inputs
 - Generations depend on other inputs
- Generations look smooth but awkward

Reference batch normalization

- Training with two mini-batches
- Fixed reference mini-batch to compute μ_{hn}^{ref} , σ_{hn}^{ref}
- Second mini-batch x_{batch} for training
- Same training, only use μ_{bn}^{ref} , σ_{bn}^{ref} to normalize x_{batch}
- Problem: Overfitting to the reference mini-batch

Standard mini-batch

Reference mini-batch

Iteration 3

Iteration 1

Iteration 2

Virtual batch normalization

- Append the reference batch to regular mini-batch
- o GPU memory is a potential issue

Balancing generator and discriminator

- Usually the discriminator wins
 - → Good, as the theoretical justification assumes a perfect discriminator
- Usually the discriminator network is bigger than the generator
- Sometimes running discriminator more often than generator works better
 - However, no real consensus
- Do not limit the discriminator to avoid making it too smart
 - Making learning 'easier' will not necessarily make generation better
 - Better use non-saturating cost
 - Better use label smoothing

Challenge: Convergence

- Optimization is tricky and unstable
 - finding a saddle point does not imply a global minimum
 - A saddle point is also sensitive to disturbances
- An equilibrium might not even be reached
- Mode-collapse is the most severe form of non-convergence

Challenge: mode collapse

- Discriminator converges to the correct distribution
- Generator however places all mass in the most likely point
- All other modes are ignored
 - Underestimating variance
- Low diversity in generating samples

Minibatch features

- Classify each sample by comparing to other examples in the mini-batch
- If samples are too similar, the model is penalized

Challenge: how to evaluate?

- Obspite the nice images, who cares?
- It would be nice to quantitatively evaluate the model
- For GANs it is hard to even estimate the likelihood
- In the absence of a precise evaluation metric, do GANs do truly good generations or generations that appeal/fool to the human eye?
 - Can we trust the generations for critical applications, like medical tasks?
 - 'Are humans a good discriminator for the converged generator?'

Challenge: beyond images

- The generator must be differentiable
- Tasks with discrete outputs (like text) are ruled out
 modifications are necessary to flow gradients through discrete variables
- Other types of structured data like graphs is also an open problem

A summary of today's open challenges in GANland

- What are the trade-offs between GANs and other generative models?
- What sorts of distributions can GANs model?
- How can we scale GANs beyond image synthesis?
- What can we say about the global convergence of the training dynamics?
- Or How should we evaluate GANs and when should we use them?
- How does GAN training scale with batch size?
- What is the relationship between GANs and adversarial examples?

https://distill.pub/2019/gan-open-problems/

Feature matching

Instead of matching image statistics, match feature statistics

$$J_D = \left\| \mathbb{E}_{\boldsymbol{x} \sim p_{data}} f(\boldsymbol{x}) - \mathbb{E}_{\boldsymbol{z} \sim p(\boldsymbol{z})} f(G(\boldsymbol{z})) \right\|_2^2$$

o *f* can be any statistic of the data, like the mean or the median

Use labels if possible

- Learning a conditional model p(y|x) is often generates better samples
 - Denton et al., 2015
- Even learning p(x, y) makes samples look more realistic
 - Salimans et al., 2016
- Conditional GANs are a great addition for learning with labels

One-sided label smoothing

Operation of the property o

```
cross entropy(1., discriminator(data))
+ cross entropy(0., discriminator(samples))

    One-sided label smoothing:

cross entropy(0.9, discriminator(data))
+ cross entropy(0., discriminator(samples))
O Do not smooth negative labels:
cross entropy(1.-alpha, discriminator(data))
+ cross entropy(beta, discriminator(samples))
```

Benefits of label smoothing

- Max likelihood often is overconfident
 - Might return accurate prediction, but too high probabilities
- Good regularizer
 - Szegedy et al., 2015
- Does not reduce classification accuracy, only confidence
- Specifically for GANs
 - Prevents discriminator from giving very large gradient signals to generator
 - Prevents extrapolating to encourage extreme samples